Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana.

نویسندگان

  • Wendy Ann Peer
  • Anindita Bandyopadhyay
  • Joshua J Blakeslee
  • Srinivas N Makam
  • Rujin J Chen
  • Patrick H Masson
  • Angus S Murphy
چکیده

Aglycone flavonols are thought to modulate auxin transport in Arabidopsis thaliana via an as yet undefined mechanism. Biochemical studies suggest that flavonoids interact with regulatory proteins rather than directly with the PIN auxin efflux facilitator proteins. Auxin transport is enhanced in the absence of flavonoids (transparent testa4 [tt4]) and reduced in the presence of excess flavonols (tt7 and tt3). Steady state PIN mRNA levels in roots inversely correlate with auxin movement in tt mutants. PIN gene transcription and protein localization in flavonoid-deficient mutants appear to be modulated by developmental cues and are auxin responsive. Modulation of PIN gene expression and protein distribution by localized auxin accumulations occurs in the wild type as well. Flavonoids inhibit auxin transport primarily at the shoot apex and root tip and appear to modulate vesicular cycling of PIN1 at the root tip. In some auxin-accumulating tissues, flavonoid increases and changes in flavonoid speciation are subsequent to auxin accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter ...

متن کامل

A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis.

The directional transport of the phytohormone auxin depends on the phosphorylation status and polar localization of PIN-FORMED (PIN) auxin efflux proteins. While PINIOD (PID) kinase is directly involved in the phosphorylation of PIN proteins, the phosphatase holoenzyme complexes that dephosphorylate PIN proteins remain elusive. Here, we demonstrate that mutations simultaneously disrupting the f...

متن کامل

The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana.

The phytohormone auxin is a major determinant of plant growth and differentiation. Directional auxin transport and auxin responses are required for proper embryogenesis, organ formation, vascular development, and tropisms. Members of several protein families, including the PIN auxin efflux facilitators, have been implicated in auxin transport; however, the regulation of auxin transport by signa...

متن کامل

Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--a...

متن کامل

Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function.

Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1(orc) mutants displayed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2004